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Abstract. In order to facilitate the access and the usage to the general public
of the rapidly expanding applications and services, particularly on the Internet,
new assisting tools are needed with two main requirements: naturalness and ac-
ceptability. Conversational Agents are a promising approach for the support of
the Function of Assistance, especially when they focus on the Natural Language
modality. In this context, the assisting agents cannot rely only on rational reason-
ing over the structure and the functioning of the assisted application in order to
resolve the user’s questions. Agents must also express behavioral reactions that
involve social relationships, character traits and affects. Once studied in separate
communities, the relationships between rational and behavioral reactions are now
considered a key issue. Some models have been proposed where the relationships
are preset and often rigid while we think that more flexible tools would be handy
to make experimental studies of this problem. In the first part of this paper, we
propose a flexible framework for modeling the relationships between the rational
and behavioral reactions of an assisting agent. Then this framework is used to
support a first case-study, based on cognitive biases.

1 Introduction

1.1 Assisting Conversational Agents

With the increase of computer applications and services together with their functionali-
ties and the number of general public users, the need for an efficient assistance to novice
users, long time addressed [1], is now becoming crucial. However the renewal of the
scientific interest in the Function of Assistance is above all prompted by the new issues
engendered by this population of novice users. In the paper, the term ‘Function of Assis-
tance’ is employed in a generic way to refer to the activity of providing help to a human
user involved in some task; it ranges from butler agents [2] to conventional help systems
but excludes for example the domains of learning and training. As opposed to computer
experts who rely on reference manuals or to corporate employees who are often trained
before they are compelled to use daily a small amount of desktop applications, it has
been shown that novice computer users, when in need for assistance, tend to prefer ask-
ing help from a “friend behind their shoulder”, as defined in [3], rather than from the
traditional help system available on their computer. Indeed, the acceptability factor is
now considered a major usage barrier to the expanding of assisting tools. Although the
salience of the task at hand can partially explain the so-called “paradox of motivation”
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defined by [4] where people are not motivated to learn how an application works but
rather to achieve their task, the observation of cognitive phenomena like the “Persona
effect” defined by [5] stating that the personification of an agent increases its accept-
ability or the positive impact of natural language interaction for assistance purposes
exhibited by [6] proves it can also be related to a need for a more intuitive interaction.
From there, Embodied Conversational Agents (ECA) [7] have been envisioned to pro-
vide more natural assistance for novice users, thus defining a subclass of ECA dedicated
to the Function of Assistance that we shall refer to as Assisting Conversational Agents
(ACA) [2] .

In the same way as many studies have been focusing on the improvement of the
physical believability of ECA, for instance through expressive emotions [8, 9], we be-
lieve that to go across the “uncanny valley” exhibiting a decorrelation between the re-
alism of the personification and the acceptability [10] would require agents not only
physically but also cognitively believable, i.e. able to exhibit complex behaviors simi-
lar to human beings’ ones (an increased believability improving as well the perceived
human-likeness [11]). To go towards this direction, we propose to provide ACA with:
1) personality parameters similar to the ones used in psychological studies to character-
ize human beings, 2) cognitive constraints deeply integrated into the agent underlying
architecture to emulate restrictions human beings would have in similar situations.

Researchers in Multi-Agents Systems (MAS) have explored, since the beginning,
the concept of “cognitive agents”, using cognitive theories to model agents’ reason-
ing capacities. For example, by adding a layer over existing agent creation tools, like
CoJACK [12, 13] for JACK which takes into account parameters simulating some phys-
iological human constraints like the duration taken for cognition, working memory lim-
itations (e.g. “losing a belief” if the activation is low or “forgetting the next step” of
a procedure), fuzzy retrieval of beliefs, limited focus of attention or the use of moder-
ators to alter cognition. Attempts to add emotions to classical BDI architectures [14]
have also been undertaken, for instance to take into account fear, anxiety or selfconfi-
dence by adding parameters like fundamental desires, capabilities and resources [15].
The idea of adding degrees in multivalued logic for beliefs, desires and intentions has
also been explored in [16], with the case of the Łukasiewicz logic. It has been shown as
well that the order in which heuristics are applied can significantly impact the agent’s
perceived personality: if we consider classes of rules (like Beliefs, Desires, Intentions
or Obligations), it can even be a way to characterize the agent’s personality, with traits
like stable, selfish or social [17].

1.2 Towards rational and behavioral agents experimentation

A typical ACA architecture (Fig. 1) is composed of two main parts:
1) The user interface (I ): is in charge of the conversational interaction between the
help system and the user. Conversational agents are inherently multimodal [18] but in
the case of the assisting agents, the Natural Language modality plays a prominent role
in the process of assistance because novice users prefer to express their problems in
Natural Language when in presence of an ACA [3]. Hence, as a simplification, we will
not consider the multimodal dimension in this paper. For example, while aware of their



3

relevance to the acceptability factor [19], we will let aside the issues related to the graph-
ical and gestural personification of the agent (its appearance and animation as a virtual
character on screen). Instead, we focus on the processing of the Natural Language help
requests put by the users. Consequently the two main devices of the interface are:
— The Natural Language Processing chain (NLP-chain): it translates user’s textual ut-
terances into a formal form, the Formal Request Language (FRL), destined to the agent;
— The Natural Language Expressing chain (NLE-chain): it expresses the agent’s for-
mal answers to the user, using mainly Natural Language. The NLE-chain uses also the
FRL formalism which has been designed to support both users’ questions and agent’s
answers.

2) The assisting agent (A ): handles the help requests of the users once they have been
translated in a formal form. The assistant is composed of two sub parts:
— The Model of assistance (M ): it is a formal model of the application dedicated to the
support of the Function of Assistance. Considering several applications to be assisted,
all the models share the same ontology, but a specific model must be instantiated for
each application.
— The Rational engine (Er): it processes the formal requests while using a set of sym-
bolic reasoning heuristics that are applied to the model M ; then it builds a formal
answer that is sent back to the interface which in turn, synthesizes the answer. The
heuristics of the rational engine should be as generic as possible, meaning that they
should not depend on a particular application. In this context, we have developed a pro-
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Fig. 1. A typical ACA architecture

gramming framework called DIVA [20], which the objectives to be both:
1) Web-based, that is dedicated to the development of ACAs for applications and ser-
vices on the Internet. The assisting agent is personified by a virtual animated character,
fully integrated in the Web pages. The agent can interact in Natural Language with the
users (they type their requests in a ‘chatbox’ and the agent replies in a ‘balloon’). The
agent can also access the Document Object Model (DOM) content [21] of the assisted
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page: it can consult but also modify the DOM structure. Actually, DIVA stands for
“DOM-Integrated Virtual Agents” which emphasizes its specific capability of browsing
and reasoning over the DOM structure of the Web pages.
2) open-source for research purposes, to facilitate the development and deployment of
controlled experiments where ordinary users can interact with small applications as-
sisted by ACAs.
The DIVA framework has proven to be cost-effective and has enabled us to carry out
several experimental applications (cf. examples on the DIVA website [20]). However,
first experimentations with novice users [11] have revealed some limitations of assist-
ing agents based on a strict rational engine. They have pointed out at least three obvious
phenomena that hamper the human-likeness and dialogical naturalness of the agents:
1) Repetition of the agent’s cooperative reactions: the agent is always responsive what-
ever happens during the session, whatever the character it endorses and whatever the
user asks. For example, the agent can neither hide information it possesses from the
user nor refrain from executing an operation it can do when commanded by the user.
2) Repetition of the answer’s schemes: the agent provides the same information several
times without any linguistic variability.
3) Repetition of the rational reactions: if the user puts several times the same request,
each time the agent reacts to the requests independently from the session that is as if
the request hadn’t been put before.

These observations emphasize the importance of more human-like behaviors as far
as the general public is concerned. This is the reason why we propose in this paper a
modified ACA architecture where the assisting agent is provided with both a personality
model integrated into the model of assistance M and a correlated Behavioral Engine
(Eb) that works in conjunction with the Rational engine (Er). In this study, we will rely
on the state of the art research [22] [23] for the definition of the personality model and
we will focus the discussion on the relationships between the two engines: Er and Eb.

Several authors have discussed the relationships between strict rational reasoning
(often associated with Artificial Intelligence) and more psychological-oriented behav-
ioral reasoning, (often associated with works in Affective Computing). First, Damasio
has claimed the prominence of affects upon rationality [24] and the OCC model [25]
has provided a first computationally tractable framework [26] but with a preset model,
henceforth criticized and modified by further authors [27]. Indeed, the nature of the rela-
tionships between rational reasoning and behavioral reasoning in conversational agents
is an open issue that requires many experiments before it could be settled. Consequently,
we need to develop specific software tools to support such experimental research [28].
In this context, the main objective of the paper is to propose a flexible software architec-
ture that can support the implementation and the experimentation (e.g. through DIVA
experiments) of various scenarios of relationships between Rational and Behavioral
agents (further abbreviated as R&B agents).

The outline of the paper is as follows: Section 2 is dedicated to the description of a
supporting architecture for R&B agents with the Formal Request Language (FRL), the
representation of the model of assistance (M ) and the Heuristic Description Language
(HDL). In section 3 we put this architecture to the test by implementing an example of
R&B scenario which is based on Cognitive Biases.
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2 Agent architecture

2.1 Formal Request Language

As showed in Fig. 1, the Formal Request Language (FRL) supports the input/output
channel between the Interface and the Agent. As we focus on the agent’s architecture,
we just give the notations used in the following sections. The FRL is the result of our
previous work on the design of a NLP-chain for ACAs that is based on a specific cor-
pus of 11 000 help utterances collected both from thesaurus source and experimental
collecting with novice users. This work enabled an analysis and a classification of the
linguistic domain related to the Function of Assistance [29], thus enabling the defi-
nition of a Formal Request Language. In the following we describe only FRL basic
requests leaving aside complex requests like reported speech, conditional commands,
past/future, etc.
A basic FRL request is of the form F(X) where:
– F is inspired from searlian speech acts and is called performative in the following,
– X is the content. There is only one argument in basic requests.
There are four kinds of contents: X ∈ {R,A,P,V}
– R reference is a referential expression in the model M ;
– A action is the description of an operation executable in the environment;
– P proposition is a logical proposition above the model M ;
– V value is a typical value ∈V as defined in the model M ;

ask R|A|P L asks for an information or checks if the proposition currently stands or if the action is known by the int.
tell P L states an information or that the proposition currently stands
reply V L gives a value as an answer of request (ask,..) from the interlocutor
know R|A|P L states that he knows something about the content (when P, means he thinks it is true)
unknown R|A|P L states that he knows nothing about the content (or if P is true or false)
mistrust P|V L states that he thinks that the value is probably erroneous or the proposition is probably false 
why P|V L asks why the proposition is currently standing or why the value has been replied
possible A L asks if it is possible (availability, rights...) for him or the agent to execute the action
how A L asks how to do the action/procedure  
effect A L asks what will be the consequences of performing the action A

execute A|R L commands the interlocutor to execute the action or to activate the main function of the referenced object
repeat - L commands the interlocutor to execute again the last executed action
undo - L commands asks the interlocutor to undo the last executed action
suggest A|P L encourages/suggests/allows the interlocutor to execute the action / to adopt the proposition as a goal
object A|P L discourages/objects/forbids the interlocutor to execute the action / to adopt the proposition as a goal
intent A|P L states that he has the intention to execute the action in the near future / he has just adopted the  proposition as a goal

judge P L expresses a subjective opinion by stating the proposition
feel P L expresses a subjective feeling by stating the proposition
like R|A|P|V L expresses a subjective preference/liking for the content (sub case of judge)
dislike R|A|P|V L expresses a subjective dis-preference/disliking for the content  (sub case of judge)
bravo - L congratulates the interlocutor about the topic
criticize - L criticizes the interlocutor about the topic (e.g. contains abuse)

agree - L replies yes to a yes/no question or agree with the topic     
disagree - L replies no to a yes/no question or disagree with the topic  
greet L greets the interlocutor at the beginning of the session
bye L asks for the session to end

Knowledge

Action

Feelings

Dialogue

‘L’  stands for the locutor  (the user or the agent in replies)
‘-’  stands for the current focus of the dialogue session (IT)

R reference
A action
P proposition
V value

Fig. 2. List of FRL performatives
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Request subjects: The request’s emitter (called the locutor) is always the verbal sub-
ject of the performative: F(X)≡ FCURRENTLOCUTOR(X). Depending on the dialogue
turn, it can be the user U or the agent A . During a dialogue turn, several FRL requests
can be sent in a sequence separated by a semicolon ’;’.

Performatives: The list (completely given in Fig. 2) can be divided into four main
categories (that can overlap):
– Knowledge: concerns mainly information about environment objects and actions
– Action: concerns mainly the management of actions
– Feeling: concerns mainly expressing subjective opinions and feelings
– Dialogue: concerns mainly the session handling and yes/no answers
When the user types a textual utterance in the agent’s GUI ‘chatbox’, the NLP-chain
maps it onto a FRL request (or a sequence of requests) and some semantic operations
are performed like indexical processing (filling of ‘I’, ‘you’, . . . ).
USER INPUT: “I like you” =⇒ LIKEu[agent]
AGENT OUTPUT: FEELa[M>

h ] =⇒ “I am happy!” (notations are detailed in section 3).

2.2 Model of Assistance

The model of assistance (M ) of the agent is a symbolic structure that supports, in a
single framework, the symbolic representation of all the information accessible to the
agent. This section is only an overview of some main notations related to the modeling
issue. We will present successively:
– The syntax and the skeleton of the ontology (main represented entities) of the model;
– The dynamics of the model, i.e. how the symbolic representation evolves over time;
– The basic functions of Model Query Language (MQL) which is the API of the model;
– The query objects. They are MQL queries that can be manipulated by any engine.
Several formalisms have been proposed for Knowledge Representation (KR): various
levels of Logics, Semantic Networks, Description Logics, etc. Recently, tree based
forms have been widely used in the Internet application in order to enhance the basic
DOM (Document Object Model) form (RDF, OWL. . . ). Because we focus on Web-
based assisting agents that have to deal with DOM and XML-based representations, we
have chosen a tree form for the support of the agent’s model. However this model could
easily be transposed into other KR formalisms, like a base of Prolog facts for example.
The model is a tree where:
– Non terminal nodes are labeled by concepts. A concept is a Symbol or an integer
(used to index list of sub concepts);
– Terminal nodes are conventional values: Symbols, Numbers, Boolean, Strings. We
use a bracketed form to represent the tree (e.g. in Mathematica):

Model = Rootconcept[
Concept1[

Concept11[...],
Concept12[...],

...]
Concept2[
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Concept21[...],
Concept22[...]

...],
...]

In this structure, each node is composed of a head (the concept’s symbol) and a
body (the subtree contained between the brackets), also called the value of the concept.
Hence, concepts values can be conventional terminal values or more complex subtrees.
This formal tree structure allows the organization of the concepts as a static ontology
that defines the actual model of assistance. The first level of the ontology is defined by
the root concept M and five ordered sub domains, considered relevant for an Assisting
Conversational Agent. Hence the model is a 5-tuple M =< A ,U ,R,S ,T > where:

1. The agent (A ) contains the available information about the agent as a conversa-
tional character: like its name, age, gender, but also behavioral traits, moods etc.

2. The user (U ) contains the available information available about the user: like its
name, its preferences etc.

3. The request (R) contains the information about the current user’s request: its textual
and formal representation, but also the information involved in its current state of
resolution;

4. The session (S ) contains the information about the previous requests since the
beginning of the dialogical session;

5. The topic (T ) contains the available information specific to the assisted application.

Note that the term ‘available’ used above, emphasizes the fact that the model does not
contain exhaustive information about the related entities, but only the information that
was provided by the application’s designers plus the information that the agent was able
to gather during the dialogical session. Consequently, the agent has to reason with in-
complete knowledge on the world (we cannot rely on the CWA assumption [30]).

Dynamics of the model: Basically, the model M is an evolving tree structure (as in
Evolving algebra [31]). Given a new session, the model M0 starts at t0:
M0 =< A0,∅,∅,∅,T0 >, where:
– A0 is the generic submodel of the agent: it is defined by the designers of the help
system and does not depend on the assisted applications.
– T0 is the specific submodel of the assisted application: for each application, the pro-
grammer must create a model that is filled with the information (relevant to the Function
of Assistance) about the static structure and the dynamic functioning of the application.

Then, the tree structure of the model evolves according to two kinds of events:
1) Agent updates of information in A , U , R, S , according to interactions with users;
2) Application updates of the variables in T changed by the application runtime.
Hence, the structure of the model is shared between the application and the agent which
are two separate processes. The question of their synchronization is a separate issue;
see [32] for more information. The synthesis of the model of assistance M0 at t0 and its
updating during the session, at t1, .., tn defining the tree sequence M1, ..,Mn is a specific
problem (see [33]) which is out of the scope of this paper. Therefore, in the following
we will refer to the model as M , whereas it should be Mn, the current tree after n events.



8

Table 1. Main access functions of MQL where path stands for a tree path expression
M .s1.s2, ..,sn (si being node labeling symbols), n is the node referred to by path and expr
is a terminal value or a subtree

Name Role Returned value

GET[path] returns the subtree from n OK[expr] | FAIL[report]
SET[path, expr] replaces n by expr OK[expr] | FAIL[report]
MAP[path, func] replaces n by func(n) OK[func(n)] | FAIL[report]
ADD[path, expr] appends expr to n OK[expr] | FAIL[report]
DEL[path, si] deletes subtree of head symbol in n OK[expr] | FAIL[report]
VOID[] does nothing always OK[]

Table 2. The four types of agent’s mental states according to their dynamicity and to their arity

Unary Binary

Static Trait ΨT Role ΨR

Dynamic Mood Ψm Affect Ψa

Model Query Language (MQL): The model is accessed by the agent or by the appli-
cation, while using the Model Query Language (MQL). The main access functions are
described in Table 1. Additional functions like APPEND, FIRST, REST, etc. make it easier
to deal with lists (enumerated nodes). Also, paths can be simplified when there is no
ambiguity: M .A .name→ A .name (is the name of the agent in the model). Moreover,
because the tree is traversed in depth-first order, ‘name’ stands for the agent’s name
rather than the user’s name.

Agent query objects: Within the agent, MQL queries are produced by the rational
and by the behavioral heuristics. Actually, they are not sent directly by the heuristic
scheduler to the model for direct execution. Instead, a given query Qi is reified in a
so-called query object that wraps the actual MQL instruction into a symbolic structure
expressed in the same formalism as M , providing extra attributes (execution status,
result status, etc.). The heuristics are then enabled access in read/write mode to the
queries produced by other heuristics, and can perform symbolic reasoning about them.
This feature is at the core of the implementation of the Cognitive Biases in section 3.

2.3 A simple mind model for the agents

In order to implement the R&B architecture a mental model of the agent is required.
The R&B architecture can support various models provided they can be implemented in
the formalism of the model. Here we define a specific mind model that is both simple
enough to support the examples presented in section 3, and covering most significant
notions discussed in the literature about mental states modeling [34]. Hence, some sim-
plifications have been done here, e.g. we consider that traits ans roles are static (whereas



9

some works in the domain of organizations do not consider authority as a static relation-
ship). We distinguish four types of mental states according to their dynamicity and their
arity, as summarized in Table 2. Each of them is associated to a decimal value in [−1,1],
where [0,1] denotes the intensity of the concept, [−1,0] is the intensity of the antonym
of the concept and 0 the “neutral” position (neither the concept nor its antonym stand).

– Traits (ΨT ) correspond to typical personality attributes that can be considered as stable
during the agent’s lifetime, implemented using the “Five Factors Model” personality
traits commonly used in psychology [35]:

– Openness: the appreciation for adventure, imagination and curiosity.
– Conscientiousness: the tendency to self-discipline to aim at achieving goals.
– Extraversion: the energy, strength of positive emotions and tendency to seek com-

pany of others.
– Agreeableness: the propensity to be compassionate and cooperative.
– Neuroticism: the tendency to easily feel negative emotions: anger, vulnerability, etc.

– Moods (Ψm) are agent’s factors varying with time thanks to heuristics and biases,
according to previous state of the agent and to the current state of the world. We define:

– Energy: the agent’s physical strength.
– Happiness: the agent’s physical contentment regarding its current situation.
– Confidence: the agent’s cognitive strength.
– Satisfaction: the agent’s cognitive contentment regarding its current situation.

Since physical properties consider the agent as an entity embodied into the world (like
physical attributes of videogames characters), they appear less relevant in the case of an
ACA and won’t be considered in this article.
– Roles (ΨR) represent a static relationship between the agent and another entity of the
world (typically a user it is assisting). We define two main categories of roles:

– Authority: the right the agent feels to be directive and reciprocally to not accept
directive behaviors from another one. This role is often antisymmetric such as:
Authority(X,Y) = -Authority(Y,X) where ‘-’ denotes the antonym relation.

– Familiarity: the right the agent feels to use informal behaviors towards another one.
This role is often symmetric such as: Familiarity(X,Y) = Familiarity(Y,X)

– Affects (Ψa) here denote dynamic relationships between the agent and another entity
(typically the user). We distinguish at least three kinds of affects:

– Dominance: the agent feels powerful relatively to another one. It is often antisym-
metric such as: Dominance(X,Y) = -Dominance(Y,X)

– Cooperation: the agent tends to be nice, caring and helpful with another one. It is
not necessarily symmetric.

– Trust: the agent feels it can rely on another one. It is not necessarily symmetric.

Implementation of the agent’s mind in the model M : The proposed mind model is
denoted in short Ra f -Tocean-Mhesc-Adct where we just use the capitals of the nodes of the
following tree which represents our simple mind model:
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M.A.mind[
role[ // STATIC, SOCIAL RELATIONSHIPS WITH THE USER

authority[-1..1],
familiarity[-1..1]
],

trait[ // STATIC, RELATIVE TO ANYTHING
openness[-1..1],
conscientiousness[-1..1],
extraversion[-1..1],
Agreeableness [-1..1],
neuroticism[-1..1],
],

mood[ // DYNAMIC, RELATIVE TO SELF
happiness[-1..1]
energy[-1..1],
satisfaction[-1..1],
confidence[-1..1],
],

affect[ // DYNAMIC, RELATIVE TO THE USER
dominance[-1..1],
cooperation[-1..1],
trust[-1..1]
]

]
An attribute can be accessed by its full path like ‘M .A .mind.mood.happiness.value’ or
in the Ra f -Tocean-Mhesc-Adct shortened notation as Mh, for the example of the happiness.

Mind intervals: In the formal model described above, values of the attributes v are
decimal numbers ∈ [−1,1], but it is often more convenient to consider a five positions
symbolic scale based on a partition of the domain [−1,1] into five contiguous intervals:
v ∈ [−1,−0.8] < strongly antonymic
v ∈ [−0.8,−0.2] - antonymic
v ∈ [−0.2,0.2] = neutral
v ∈ [0.2,0.8] + positive
v ∈ [0.8,1] > strongly positive
To keep the model simple, we have chosen discrete intervals but Fuzzy Logic could
provide a more appropriate segmentation. Values are noted, for example, M+

h ∧A<
c to

mean the agent is happy and completely antagonistic; several intervals can be unioned
by juxtaposing the signs after the attribute: e.g. M+>

h means ‘happy or strongly happy’.

Mind Events Moreover, we are also interested in the transitions of a dynamic mind
attributes (moods and affects) from an interval to another. Each time a transition is
crossed downwards (resp. upwards) an event ‘\’ (resp. ‘/’) is generated, which is as-
sociated with the updating query. For example, Q+

i ∧ \M
−
h means that the query Qi

was successfully carried out and that the happiness of the agent has been lowered from
M=+>

h to M−h . Because events are associated with their causing queries, they are deleted
when the query object is deleted. Here, it prevents an agent from looping on saying M−h
(“I am sad”) again and again, but only once on \M−h (“I [suddenly] feel sad”).
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2.4 Heuristic Description Language

A heuristic defines a rational or a behavioral reaction to a class of formal requests ex-
pressed in FRL. In a way; one can say that heuristics hard-code the reaction of the agent.
The class of FRL expressions handled by a heuristic is defined by a pattern matching
expression (FRL-pattern) over the FRL language. The general form of a heuristic is
given by an expression of the form:

H : identifier[FRL-pattern] :→{GuardedScript1, . . . , GuardedScriptn}
Where:
GuardedScript ≡ {Guard1→ Script1, . . . , Guardn→ Scriptn}
Guardi ≡ logical expression | /0 ( /0 = True)
Scripti ≡ instruction | {Instruction1, . . . , Instructionn}
Instructioni ≡ basic operation |MQL query object call | GuardedScript
MQL query object call ≡ Q[Query identifier, MQL expression]
Since instructions can recursively be guarded scripts, it is possible to define embedded
conditional structures allowing to script decision trees, often used in heuristics engine.

Heuristic Scheduling: When a FRL request is sent to the agent, the Heuristic Sched-
uler (HS) triggers the rational and behavioral heuristics that match the request and it
ensures the coroutining of their execution. Coroutining is carried out thanks to guarded
scripts: when HS enters a guarded script construct, the current heuristic is suspended
and it is reactivated as soon as one of the guards is satisfied. When the scripti associated
with the guardi is executed the couple guardi→ scripti is deleted, so it is only executed
once (actually, there is no need to handle iteration at the HS level; iteration constructs
can be used in basic instructions but they are not coroutined). When several guards
are simultaneously actives two strategies are available to the experimenters: a) deter-
ministic: only the script of the first defined one is executed and all guarded scripts are
deleted; b) stochastic: a script is randomly chosen and executed, and all guarded scripts
are deleted. On the contrary, if no guard is triggered the agent reasoning process stops;
two mechanisms can avoid such livelocks: a) always true guards with default actions
within the heuristics; or b) default heuristics that handle what is indeed an agent failure.

Example 1: a simple rational reaction Assume that the user puts the question “What
is your age?” resulting in the FRL request ASKu[agent.age]. A possible rational heuris-
tic that can handle questions about the agent’s attributes is:
1: Hr : ask-agent-attribute[ASKu[agent.x_]]:→{
2: → Q[i, GET[x_]],
3: Q+

i → Q[ j, SET[R.reply, TELLa[agent.x_, Qi.value]]],
4: Q−i → Q[ j, SET[R.reply, TELLa[Qi.failure]]]
5: }
Explanations:
1: x_ is a pattern variable that matches any symbol like age, gender, name, . . .

(if needed, x_:list restricts the pattern to a list of authorized symbols).
2: empty guard prompts the script to be executed immediately with x_ being ‘age’

Then age will be a shortcut for M full path M.A.age.value (subtree value[v]⇒ v)
i is a unique query identifier that is used later to refer to the query object as Qi
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3: Q+
i is a shortcut for Qi.status == done ∧ Qi.head == OK

TELLa[agent.x_, Qi.value] is a FRL answer to the user
4: Q−i is a shortcut for Qi.status == done ∧ Qi.head == FAIL

Qi.failure reports the cause of the failure (e.g. NOTFOUND[path, concept])

Example 2: a simple Behavioral reaction Assume that the user types “I dislike you!”
resulting in the FRL request DISLIKEu[agent]. A possible behavioral heuristic is:
1: Hb : dislike-agent[DISLIKEu[agent]]:→{
2: → { Q[i, MAP[energy, λ x.x∗0.9]],
3: Q[ j, MAP[confidence, λ x.x∗0.9]],
4: Q[k, MAP[cooperation, λ x.x∗0.9]],
5: }
6: Q+

i ∧Qi.value <−0.5 → ADD[R.reply, TELLa[energy, “tired”]]
7: Q+

j ∧Q j.value <−0.5→ ADD[R.reply, TELLa[confidence, “depressed”]]
8: }
Explanations:
2: The agent executes a sequence of three queries to modify its mind state

energy stands for the path M.A.mind.mood.energy.value in the agent’s mind
λx.x∗0.9 is a λ -expression decrementing its argument x by 10%.

6: if its energy is very low, the agent appends “I feel tired” to the request reply list.
7: Same with the confidence; coroutining makes it possible to have both at once:

“I feel tired and depressed”.

3 A case study: the Cognitive Biases

3.1 Principle and functioning of the Cognitive Biases

In order to study the relationships between rational reasoning and behavioral reasoning,
it appeared helpful to envision a model where the problem is stretched to its extreme,
without jumping to conclusions about its actual psychological soundness. We recall here
that we are focused on developing software tools that can support various hypotheses
about the R&B relationships. Consequently, we have proposed the so-called Cognitive
Biases (CB) scenario which postulates that the rational engine and the behavioral engine
1) are constructed independently and 2) work independently.
– The Rational Engine Er is a set of rational heuristics Hri that apply on the user’s
requests: in order to resolve the current request, Er produces MQL queries Qi on the
model M and reacts to the queries’ reports.
– The Behavioral Engine Eb is a set of behavioral heuristics Hbi (called Cognitive Biases
or simply Biases) that apply on the MQL queries Qi produced by Er. Given a query Qi,
Eb can 1) alter the query and/or 2) alter the query report and/or react to the query Qi by
updating MA .A.mind.(mood|affect) This process is called query filtering.

In the CB scenario, Er has no knowledge about the existence and the effects of Eb on
the queries. Moreover, Er has read/write access to all parts of M except to MA .mind
(for example, it is not possible to use M+

h in a Er guard). Similarly, Eb has read/write
access to MA .mind.(mood|affect) and has only read access to the other parts of M .
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Fig. 3. General R&B Architecture with the specific query scheduler for the Cognitive Biases.

Consequently, Eb has no knowledge about the current rational process of request reso-
lution which is stored in the rational heuristics. Moreover, Eb is only activated when the
scheduler calls it to filter queries.

In order to support this functioning, the attribute ‘.status’ of a query Qi registers its
four successive processing states:
– Qi.status = 1 the query has been produced by Er
– Qi.status = 2 the query is pre filtered by Eb
– Qi.status = 3 the filtered query is executed over the model and its result attributes
are filled
– Qi.status = 4 the reported query is post filtered, again by Eb, and is now available
for Er guard expressions and scripts processing.
In the following, we will refer when necessary to Qi ∧Qi.status = 1 as Q1

i and so on.
The general R&B architecture and its specific query scheduler for the Cognitive Biases
is described in Fig. 3.

3.2 Implementing behaviors through biases

A behavior Hb describes a reaction of an agent according to its current state of mind
(i.e. the values in the leaves of MA .mind).

Example 3: If the agent has a high level of satisfaction and is not neurotic M>
s ∧T <−=

n ,
it would tend to be in denial when facing negativity into user’s utterances.
Assume the user tells that s/he dislikes the agent: “I hate you” ⇒ DISLIKEu[agent].
Then some rational heuristic will add the ‘agent’ to the ‘dislikes’ list of the user:
Hr: dislike-agent[DISLIKEu[agent]] :→{. . .→ Q1[i, ADD[U .dislikes, agent]], . . .}
Then a possible bias upon the produced query in state 1 is:
1: Hb : see-life-in-pink[Q1[i_, ADD[(A |U ).dislikes, y_]]]:→{
2: M>

s ∧T <−=
n → Q2[i, VOID[]]

3: . . .}
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Explanations:
1: The agent refuses to consider a query adding a user’s or an agent’s dislike into M .
2: So it replaces it by a VOID[] query that is produced with state 2.

Note that a positive result OK[] will be returned to Hr which is waiting on a
condition of the form Q+4

i and the rational process will go on without Hr being
aware that a cognitive bias occurred.

Example 4: A neurotic unhappy agent T−n ∧M−h has a tendency to perceive extra neg-
ativity in everything the user is saying.
Assume the user tells that s/he likes an entity of the application: “I like the color of
the title”⇒ LIKEu[gui.title.color]. Then some rational heuristic will possibly add the
entity to the user’s ‘likes’ list (as in example 3) but also set the attribute ‘wfu’ (meaning
worth-for-user) of this entity to the value ‘high’:
Hr: like-entity[LIKEu[x_]] :→{. . .→ Q1[i, SET[x_.wfu, ‘high’]], . . .}
However the agent can react negatively to that kind of query, and a possible bias ex-
pressing this is:

1: Hb : see-life-in-black[Q1[i_, SET[x_.wfu, ‘high’]]]:→{
2: M>

s ∧T <−=
n → {

3: Q2[i, SET[x_.wfu, ‘high’],
4: ADD[R.reply, REQUESTa[JUSTIFYu[M .R ]]]
5: Q2[j, MAP[confidence, λ x.x*0.8]
6: . . .},
7: . . .}

Explanations:
3: The query itself is not altered. It just goes from state 1 to 2.
4: A sour reply is added to the request R.reply to ask the user to justify that opinion.
5: Moreover, because it is depressing to perceive high spirits from others

when one is in a sad mood itself, the agent can decrease its happiness by 20%.

Now, it is possible that we had defined another bias filtering/reacting to queries in state
3 that are associated with a mind event that was possibly triggered by a mind update
(like \M−c ):
1: Hb : on-entering-unconfidence[Q3[i_, MAP[confidence, f_]]]:→{
2: Q+4

i ∧\M−c → ADD[R.reply, TELLa[\M−c ]]
3: . . .}

This, in turn can prompt an extra “I feel suddenly depressed” reply on the event that
the agent enters downwards into the M−c interval, and so on. Note that extra queries
produced by biases are created in state 2 so that they can also be biased (between states
3 and 4) by other biases like the one above, when they are sent back. Again, unaware of
these biases, Hr will further add to R.reply an OK[] report. Finally the expressing mod-
ule will have to pragmatically sort and turn the list of produced replies into something
like “Ok, but can you justify that!” or even “I take it, but give any reason why! . . . I feel
suddenly so depressed”.
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4 Conclusion

In the context of new assistance tools for the general public we have stated that the
Function of Assistance must be supported both by rational reasoning over the task at
hand but also by behavioral reasoning about the dialogical session between the users
and the assisting agent. However, it is an open issue to figure out the nature and the re-
lationships between the rational and the behavioral heuristics that support the reactions
of the agents. This has prompted the design of a dedicated architecture for modeling
both the rational and the behavioral heuristics in a single framework: the R&B agents).
The R&B framework allows the implementation of flexible relationships between the
rational and behavioral engines in order to experiment various scenarios. As a first step
to the evaluation of the framework, we have implemented a simple but really trying case
study, based on the Cognitive Biases scenario, where the two engines are independent
but work in conjunction by sharing internal model queries. In further work, we intend
to use the Web-based DIVA toolkit with the R&B framework in order to implement
research experiments on various scenarios of agents with ordinary users on the Internet.
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