
Tree kernel and Feature Vector Methods
for Formal Semantic Requests Classification

François Bouchet and Jean-Paul Sansonnet

LIMSI-CNRS
Université Paris-Sud XI

BP 133, 91403 Orsay Cedex, France
bouchet@limsi.fr

Abstract. In this paper, we’re interested in the classification of natu-
ral language requests converted into a formal representation, where the
classes represent the conversational activity of those requests. This study
is based on a corpus of requests collected using an assisting conversational
agent, in which we identified four different classes (control, chat, direct
and indirect assistance requests). The objective would be to take over
from the rule-based system when it fails. First representing formal re-
quests as a tree, we show it is possible to adapt tree kernel methods to
our problematic. A second approach consisting in ignoring the request
structure to focus on its components (i.e. considering it as a feature vec-
tor) gives better results a priori. We finally consider combining several
of the previous classifiers, thus reaching a performance rate of 76.1%,
which could be enough for using it as a complementary system.

1 Introduction

Providing a relevant and motivating assistance to novice users of computer appli-
cations has been a key issue for software designers for a long time, and it remains
an open and topical issue as the population of new computer users keeps increas-
ing. It has been shown that natural language (NL) modality is an ideal way to
capture users’ needs as this is a modality spontaneously used to express their
frustration (similarly to the ’thinking aloud effect’ [1]) and also because using
mutimodality allows a clear cognitive separation between the application and
the help system (with graphical [2] or dialogical [3] modalities). In this context,
we have chosen to develop an assistance system relying on the use of Embodied
Conversational Agents (ECA) [4] to take moreover advantage of the increased
agreeability and believability a human-like presence brings to the system (cf. the
‘Persona Effect’ described in [5]).

In order to answer the requests issued by the user, regardless of the ability
to ultimately build a correct answer (either from text mining a written help
database like in TREC [6] or through an analysis of a dynamic model of the
application [7]), the agent needs to understand the purpose of the request. Typ-
ically, this is achieved in two steps: first, through the transformation of an input
request given as a string into a structured grammaticaly-based representation

like in HPSG [8], and in a second time, with a semantic analysis in order to
extract higher level structures (e.g. an order to modify an element of the appli-
cation, a question about the possibility to do some action, etc). The automation
of this process is a challenging task that we have been addressing so far mainly
through a set of association rules between lemmas or grammatical structures on
one side, and semantic structures on the other. Nonetheless, as it has been shown
for instance in the case of machine translation [9], machine learning approaches
are often very complementary to rule-based ones, which leads us to investigate in
this paper the possibility to apply automatic classification methods that would
enable the agent to be able to at least identify the conversational activity of a re-
quest when the rule-based methods fail. Being able to provide even an only very
partially relevant answer is always better than no answer at all, as that kind
of situations immediately leads to a very negative ‘Clippy Effect’ [10], where
the disappointment and the feeling to have been misleaded equal user’s origi-
nal high expectations in the agent generated by the embodiment. For instance,
when asked “Click the red button?”, its correct identification as a control request
could lead the agent to answer something like “Please explain the action you’re
expecting me to do” intead of a very frustrating “I don’t understand”.

If automatic document classification has been largely studied, it is less the
case for simple requests which often consists in a single utterance. Most attempts
on single utterances focused on classification for question answering (QA) like
in [11] where the authors particularly use a tree kernel approach (similarly to
what we’ll see in section 3) but which is based on the grammatical representation
of the request (instead of a semantic one in our case). [12] also tries to take
into account the semantic content of the requests but focuses only on “WH-”
questions (what, when, why, etc) that expect a simple fact as answer, whereas
the requests we have to deal with have much more variety (cf. section 2.2).

After an introduction to the considered conversational activities and to the
formalism used to represent the requests, we first regard the formal semantic
requests as trees and show the possibility to apply a tree kernel approach. In a
second time, we forget the structure of requests and see them as feature vectors
to which we apply classical classification methods (KNN, multilayer perceptron,
decision tree and naive Bayes classifier). We finally try to exploit the comple-
mentarity of the approaches through a combination of the previous classifiers.

2 Resources: requests, classes and formal representation

2.1 Corpus of user requests

This study relies on real novice users requests that have been collected for two
years and gathered into a corpus of 11,000 requests, in order to get an overview of
the kind of requests an assisting agent in situ would have to face. However, since
the whole corpus hasn’t been manually annotated in terms of conversational
activities (cf. section 2.2), the work presented in this paper has been achieved
on a subset of 1,070 sentences. This subset has been shown to be representative
of the full corpus since it is a collection of two independent subsets of randomly

chosen sentences without repetition, and the comparison of those two subsets ac-
cording to various parameters hasn’t revealed any significant difference between
them [13].

2.2 Classes: four conversational activities

In a preliminary study of the aforementioned subset of the corpus, we have shown
that it can be divided into three main categories of conversational activities:

1. Control requests (15%), in which the user expects the agent to act as a
mediator interacting with the application.

2. Assistance requests (45%), the ones we’re the most interested in and among
which we can distinguish:
– Direct assistance requests (36%), where the need for assistance is ex-

plicit at the linguistic level – e.g. “how can I register?”
– Indirect assistance requests (9%), requiring a pragmatic analysis since

a low level analysis could lead to another reaction than assistance – e.g.
“pity, I can’t change the color of the table”.

3. Chat requests (40%), made of feedbacks and requests where the agent re-
places the assisted application as the user’s center of attention.

2.3 The DAFT formal representation language

As a preparation to the work presented here, we have defined a formal request
language, called the DAFT language, in order to capture the main semantics of
the assistance requests from the corpus. We have also created a natural language
processing tool, called DIG (for DAFT Interpretation Generator) which can au-
tomatically translate a user request into a formal request represented in DAFT.
Note that the 1,070 formal requests used for classifications done in this arti-
cle are issued from DIG, and hence shouldn’t be considered as error-proof as
it would have been the case if we had been working on their manual transcrip-
tion. However, since our objective is ultimately to use the classification in real
assistance cases, we consider it would be useless to have a system efficient with
a correct representation of the request when we are actually not able to auto-
matically generate it. This means that shall be DIG improved in the future, the
performances obtained with the classification methods below might change too.

Request basic elements: entities The basic element for the structure of the
formal language is the entity. An entity E is used to reify any actual semantic
notion. It is formally defined and represented as:

E = ts : s [g, t1 : a1 = v1, . . . , tn : an = vn]

= ts : s

[
g,

n⋃
i=1

ti : ai = vi

]

where: ts ∈ TE is the type of the entity E,
s ∈ S is the identifier of the entity E,
g is a string representing the gloss defining, in natural language,

the meaning of the entity, possibly through examples (like for synsets in
WordNet [14]),

ti ∈ T is the ith attribute type of the entity E,
ai is the ith attribute identifier (a symbol),
vi ∈ δti is the value of the ith attribute, within the domain of validity δti

explicitly associated to ti.

We call E the (infinite) set of entities.
To refer to the identifier s of an entity E, we’ll write it as id[E]. Same goes
for the type written as type[E] and the gloss written as gloss[E]. We also re-
fer to the number of triples (ti, ai, vi) of an entity E as its cardinal written as |E|.

Example 1: an entity Eex1 corresponding to the verb “to click”:

Eex1 = act : Click[
‘‘A person is clicking on an object in a certain manner’’,
person : clicker = ∅,
object : clicked = ∅,
manner : manner = ∅

]

where id [Eex1] = Click, type[Eex1] = {act} and the three attributes are ‘clicker’,
‘clicked’ and ‘manner’, so we have |Eex1| = 3.

Identifier: The identifier, used as the head of an entity, is what defines other
parameters except values, which can be expressed as:

∀(E1, E2) ∈ E2, id[E1] = id[E2]⇒ (gloss[E1] = gloss[E2]
∧ type[E1] = type[E2] ∧ |E1| = |E2|
∧ ∀i ∈ J1, |E1|K, ti[E1] = ti[E2]
∧ ∀i ∈ J1, |E1|K, ai[E1] = ai[E2])

So if E1 and E2 have the same identifier, only their values can be different.

Schemes: The association between on one side an identifier, and on the other
side a type, a gloss, a set of attributes identifiers and their associated types, is
done through the definition of a scheme for each identifier. The scheme of an
entity could then be defined as the invariant elements between two entities with
the same identifier. There are 237 different schemes1, so |S| = 237.
1 Depending on their semantic role (i.e. the meaning they have over their attributes),

identifiers belong to one of four different classes (namely “Modalities”, “Actions”,
“References” or “Properties”) but this notion is not used for the classification and
thus will not be discussed it in this paper – see [15] for more details. It explains
however the different font cases used for identifiers’ names.

Types: Types are a restriction over the values that can be associated to the
corresponding attribute. An attribute type ti can be:

1. a symbol in TE representing a subset of the 237 existing schemes,
2. a value chosen in a finite set written as Jval1, val2, . . . , valnK,
3. a value chosen in an interval written as [boundinf , boundsup],
4. a classical type: String or Boolean.

Attributes: Each attribute identifier ai has a unique name in the context of the
entity E to which it belongs:

∀E ∈ E,∀i, j ∈ J1, |E|K, i 6= j ⇒ ai 6= aj

Conversely, that means two entities with a different identifier can have some or
all attributes identifiers in common:

∀((E1, E2) ∈ E2, (∀i ∈ N, ai [E1] = ai [E2])) ; id [E1] = id [E2]

Moreover, there is no bijection between an attribute identifier and a type:

∀
(
(E1, E2) ∈ E2, id [E1] 6= id [E2]

)
, (i, j) ∈ N2, ai[E1] = aj [E2] ; ti[E1] = tj [E2]

The attributes associated to the scheme of an entity have been defined accord-
ingly to what has been found in the Daft corpus. That means attributes of an
entity are the statistically most frequent parameters associated to the notion
described by the gloss, but we’re clearly not pretending to be exhaustive.

Values: A value vi can be:

1. an entity, if its type ti is a symbol,
2. a terminal value, if its type ti is anything but a symbol,
3. empty (written as ∅), in any case, when no value is associated to the attribute
ai. By default, values are empty so an entity doesn’t need a value associated
to each attribute in order to be valid (cf. example 1).

Requests as an association of entities A user request is represented as a
tree of entities. Normally, if the request is correctly represented, the set should
have a size of 1 (unique root), which is not the case practically as we’ll see on
figure 2.

Example 2: representation of the request “Click the red button” (using the entity
Click[. . .] introduced in example 1)

Rex2 = act : Click[
person : clicker = ∅,
object : clicked = object[

ppt* : property = {
type : type[{[window, button, field...]} : val = button],

quantity : quantity[{[0, 1, 1+, N, Some...]} : val = 1],
color : color[{[black, white, red, blue...]} : val = red]

},
act : doing = ∅,
act : subject-of = ∅

],
manner : manner = ∅
]

The ‘property’ attribute type, ppt, is suffixed with a ‘*’ to mean that the
attribute can be associated to a list of entities having ‘ppt’ as their type or
in the ancestors of their type. Otherwise by default only a single value can be
associated to the attribute.
For readability reasons, DIG can produce a representation of the nested lists as
nested boxes. A box represents an entity, and hence is made of an identifier (in
the top left-hand corner) and a list of triples (ti, ai, vi) shown as [ti]ai = vi. If
the value is another entity, it appears as another box.
A graphical version of example 2 can be seen on figure 1 (attributes with an
associated empty value are not represented).

Fig. 1. DIG output (nested boxes) representation of the request “Click the red button”

3 Structure-based classification: requests as trees

Now that we have introduced the formalism used to represent the semantics of
the requests and the four classes into which we want to classify them, we can fo-
cus on the different possible classification methodologies, starting by considering
the request as a tree.

3.1 Methodology: tree kernel approach

General principles of tree kernel methods The idea behind kernel based
approaches is to be able to use a linear classification method to solve a non-linear

problem. It is based on Mercer’s theorem stating that any continuous, symmetric,
positive semi-definite kernel function can be expressed as a dot product in a high
dimension space. So knowing the definition of a kernel function, any algorithm
only relying on the dot product of two vectors can be transformed into a non-
linear version by replacing this dot product by the kernel function. In our case,
we need to define a kernel function based on the distance between two elements
(i.e. two nested lists representing the formal semantic analysis of user’s requests).
To illustrate the notions introduced below, we use again the example 2 (Rex2)
introduced in 2.3 and represented on figure 1. Let R1 and R2 be two requests.
Let’s call:

si or s(Ri) the identifier of Ri (s(Rex) = Click)
fi,j the jth field of Ri (fex,2 = “clicked”)
|fi| the number of fields of Ri (|fex| = 3)
t(fi,j) the type of fi,j (t(fex,2) = object)
v(fi,j) the value of fi,j

(a request (e.g. clicked = object[. . .]), a list of requests
(e.g. property field of ‘object’) or a terminal value in a list
or into an interval (e.g. val = button))

|v(fi,j)| the number of values of fi,j
(1, except in the cases of multiple values fields
like property* for the references)

Ri the set of all subtrees of requests of the request Ri
(Rex=Click[. . .], object[. . .], type[. . .], quantity[. . .], color[. . .])

We wish to measure the distance between R1 and R2. We can consider those
requests as two trees, and hence use a kernel function like the one described
in [16] (and reminded in [17]) to measure the distance between two labeled
ordered (children are in a constant order) directed trees, which key idea is to
consider all subtrees from a parse tree.
We define the kernel function k as:

k(R1, R2) =
∑
i

hi(R1)hi(R2)

where hi(R) is the number of times the ith subtree appears among all the possible
subtrees of the request R.

The problem is that the number of all possible subtrees is very high (the
number of subtrees of a tree being exponential relatively to its size), and the
complexity of the algorithm would be dependent of it. To get back to a polyno-
mial complexity, if we consider the couple of requests subtrees r1 and r2 belonging
respectively to R1 and R2, we can rewrite the kernel function as:

k(R1, R2) =
∑

r1∈R1,r2∈R2

S(r1, r2)

where S(r1, r2) is the number of isomorphic subtrees of r1 and r2.

If we define:
|δ(r)| the number of children of the entity r (6= |fi|, as the fields can contain

a terminal value which is not a child - e.g. type[val=“button”] has a field
filled with a value, but no child request)

δ(r, j) the jth child of the entity r.

We can get the value of S(r1, r2) as:

S(r1, r2) = 0 if s(r1) 6= s(r2)
S(r1, r2) = 1 if s(r1) = s(r2) ∧ |δ(r1)| = |δ(r2)| = 0

S(r1, r2) =
|δ(r1)|∏
j=1

(1 + S(δ(r1, j), δ(r2, j))) otherwise

It is possible since |δ(r1)| = |δ(r2)| as the number of children is linked to the iden-
tifier). Note that this recursive algorithm has a time complexity of O(|R1||R2|).

Fig. 2. Example of representation of a partially analyzed user request (“I can’t figure
out how the RAZ button is working”)

Possibility of application to DAFT requests We need to check if the
constraints reminded in 3.1 can be satisfied in our particular case:

– As any request follows the order of definition given by schemas, the fields
of a request are always in the same order, and hence it is not necessary to
consider their permutations among the subtrees. So the children of an entity
are indeed in a constant order.

– The number of fields is the same for any given head (e.g. Click), so we indeed
have |fi| = |fj | if si = sj .

– If a request hasn’t been completely analyzed by DIG, it can be made of
several trees (cf. figure 2). However, a set of N trees can be treated as a
single tree which root has N children. The order of elements is linked to the
order of words in the original user request: we’ll consider it doesn’t need to
be changed.

– A field can sometimes contain a list of values (instead of a single one - cf.
the field property* of object on figure 2): it means that a field can have
more than a child in the tree. From a representation point of view, it’s not
a problem: property* shall have three children, just like KNOWLEDGE.
However, there is a real difference between multiple fields and entities. As
said above, an entity always has a known number of fields given in a defined
order. On the contrary, the number of entities into a field containing a list
of values is not always the same and their order can be different too (as
it is based on the order of appearance of elements in the natural language
request).

The necessary conditions to apply the kernel defined above to DIG requests are
filled. However the last point concerning multiple fields shows a modification in
the calculation of S will be needed.

Modifications to the kernel function The kernel function used to measure
the distance between two requests isn’t fully appropriate for several reasons,
related to the specificities of the data used (problems 1 and 2) and to the chosen
kernel function itself (problems 3 and 4):

1. The kernel function only takes into account entities’ heads, and not the fields
values when they are not an entity (i.e. when they are leaves of the tree,
that is a terminal value like “button” or “user” in figure 2).

2. The lack of handling of multiple values fields (cf. last point in 3.1).
3. The kernel function values are dependent of the tree size. For instance, the

proximity between two identical short requests will be lower than between
two identical requests having more entities.

4. The kernel is said to be very peaked: very small modifications in a subtree
can have an important impact on the value of the distance function. For
instance, we can easily have k(R1, R1) ≥ 102 k(R1, R2). That means it will
give a very high weight to the closest tree, which can be problematic for
some classification algorithms.

To solve problems 1 and 2 linked to the field values (a list in the first case,
a terminal value in the second) requires modifications to the calculation of S:

1. Handling terminal values in subtrees, led to the following changes:

S(r1, r2) = 0 if s(r1) 6= s(r2)
S(r1, r2) = 1 if s(r1) = s(r2) ∧ |f1| = |f2| = 0

S(r1, r2) =
1 + |v(f1, j) = v(f2, j), j ∈ J1, |f1|K|

1 + |f1|
if s(r1) = s(r2) ∧ |δ(r1)| = |δ(r2)| = 0

S(r1, r2) =
|δ(r1)|∏
j=1

(1 + S(δ(r1, j), δ(r2, j))) otherwise

The second line handles the case where r1 and r2 are identical terminal values
(e.g. “button” and “button”), whereas the third line is used when the head of r1
and the head of r2 are identical but not necessarily the content of all their fields
(e.g. a[b, c] and a[b, d] have the same head and one field in common). So instead
of considering two requests can just be identical (1) or different (0), we say that
their proximity value is dependent on the similarity of the values of their fields:
if all the fields are filled with the same value, they are identical (1), whereas if
they are all different, the proximity is low but they are not completely different
since at least their heads were the same (1/(1 + |f1|)).

2. To handle multiple values fields, the problem is double as it means:

– Dealing with the fact the order of fields can be different. For example:
object[ppt*=color[val=‘‘red’’],size[val=‘‘small’’]]
object[ppt*=size[val=‘‘small’’],color[val=‘‘red’’]]
We can get back to an ordered situation (as suggested in [18]), by using the
requests heads to sort them alphabetically during the data preprocessing.

– To handle the variability of the number of fields is trickier, because we can’t
keep comparing elements two by two. However, the algorithm can be adapted
to test instead the presence of values from a multiple values field r1 into
another multiple values field r2 (and conversely). This is done through a
normalization based on the total number of values in this field for both r1
and r2. Formally it gives:

S(r1, r2) =
|{v(f1,j) ∈ f2,j}|+ |{v(f2,j) ∈ f1,j}|

|{v(f1,j)} ∪ {v(f2,j)}|
if s(r1) = s(r2) ∧ |v(fi,j)| 6= 1

As for problems 3 and 4, a solution to them is suggested in [16] that can be
applied here too:

3. To prevent the raise of the k with the complexity of the request, it can be
normalized:

k′(R1, R2) =
k(R1, R2)√

k(R1, R1)× k(R2, R2)

4. Finally to get rid of the peak effect, a solution is to add a coefficient λ
such as 0 < λ ≤ 1 in the calculation of S, which would give a weight dependent
on the number of subtrees, hence modifying the formula of the kernel function:

k(R1, R2) = λsizei

∑
i

hi(R1)hi(R2)

The value of λ can be changed to optimize the classification.

3.2 Classification results

Now that we have defined an appropriate distance measure between the requests,
any classical data classification method could be tried, by using the distance
between the request to classify (in one of the four requests categories) and the set
of requests from the training set. We have been using a 10-fold cross-validation,
so the performance results of each classifier given below are a mean of the 10
results.

We have been applying K-Nearest neighbors method for K varying from 1
to 15 and λ from 0.05 to 1 with a step of 0.05. In every case the optimum was
found for λ ∈ [0.7, 0.9], and the performance was globally decreasing as K was
increasing, the best result being obtained for K=1 and λ = 0.85, which classifies
correctly 65.4% of the requests. Figure 3 shows the variation of λ for K=1 and
variation of K for the optimum λ.
When more than one class is possible (for example, with 4-nearest neighbors, 2
close neighbors are in the control category and 2 others in the chat one), the
class is picked randomly among the possibilities. Changing this strategy to pick
the category of the closest neighbor instead hasn’t revealed any significant dif-
ference in the results (note that in that case, for K=2 the result is then identical
to K=1, which explains the plateau for K=2 on figure 3).

Fig. 3. Performance of the NN and KNN methods for λ = 0.85 (top = best score,
middle = mean score, bottom = minimum score)

4 Semantic-based classification: requests as vectors

4.1 Methodology: schemes vectors definition

For each request, we can consider its scheme vector, made of the number of each
of the 237 schemes used in a request. Doing so, we do not take into account the
structure of a request but only the nature of its elements.
From the 1,070 requests automatically transcribed in DAFT by DIG, we have
thus obtained a matrix of 1,070 scheme vectors of 237 integer values correspond-
ing to the number of occurrences of each scheme in the request. For example, if
the first element of the vector represents the number of ASK schemes and the
second the number of NEG schemes, a request with no ASK and two NEG enti-
ties would be associated to a scheme vector v = 0, 2, . . . (with |v| = 237). From
there, we can use any classical classifier to identify the subcorpus of a request
according to its scheme vector.

4.2 Classification results

Fig. 4. KNN method (K ∈ J1, 20K) applied to schemes vectors with different distances:
Euclidian (gray dashed), Chebyshev (bottom dashed), Hamming (dot dashed), Man-
hattan (dotted), Canberra (thin), Correlation (long dashed), Bray-Curtis (thick)

As in 3, we can use a KNN approach. But this time, the distance function
hasn’t been defined beforehand; we have first tried seven classical distance func-
tions: Euclidian, Chebyshev, Hamming, Manhattan, Canberra, Correlation and
Bray-Curtis. They have been tested with a training set made of 7/10th of the
corpus (749 requests) and a test set made of the remaining 3/10th (321 requests),
with the number of neighbors K varying from 1 to 20 (cf. figure 4).
Bray-Curtis and correlation distance appear to be the most promising ones and
thus have also been tested with a 10-fold cross-validation in order to compare
the system overall performance with what we had in previous sections.

Among other classical classifications methods tried with Weka (which main
results are displayed in table 1), the best results were obtained with a Naive
Bayes classifier with a kernel estimator.

Table 1. Performance of classification methods with a vector approach (leave-one-out)

Classification method Overall score

Baseline 40.2%
Multilayer perceptron 55.7%
K Nearest Neighbours (K=10, Bray-Curtis) 69.2%
Decision tree (C4.5) 70.4%
Adaboost with C4.5 71.8%
Naive Bayes (with kernel estimator) 74.1%

5 Combination of classifiers

At this point, we can consider the possibility that previous classifiers from both
approaches could be combined into multiple classifier system to improve the
overall performance [19] and we have chosen a parametric approach (i.e. addition
of classifier taking as input the output of the previous ones).

Table 2. Summary of the performance of all the classifiers (with leave-one-out)

ID Classification method Overall score

- Baseline 40.2%
sem1 Naive Bayes (with kernel estimator) 74.4%
sem2 Decision tree (C4.5) 71.1%
sem3 K Nearest Neighbours (K=9) 63.7%
sem4 Adaboost Naive Bayes (with kernel est.) 71.1%
sem5 Bayes Net 64.9%
sem6 Decision Table 71.0%
sem7 Adaboost C4.5 71.7%
ker Nearest Neighbours 65.4%

sem1+ker Decision Table 74.4%
sem1+sem2 C4.5 75.2%

sem[1-7] Decision Table 76.1%
sem[1-7]+ker Decision Table 76.1%

Table 2 recalls the results of each classifier taken individually (results may
vary a bit from the ones given in previous sections since each classification is
done with a leave-one-out method instead of the 10-folds):

– The ID is an arbitrary name used to name combinations of classifiers.
– The classification method is the name of the method used, possibly with a

parameter.

– The overall score is the performance achieved by the classifier.

In the worst case, when we have N first level classifiers, the addition of a (N+1)th

first level classifier may not increase the overall score of the global classifier but
can’t decrease it as there is always a way with a decision table or a decision
tree to keep only the results of the N first level classifiers, if the (N+1)th would
decrease the overall score. We see the best results are obtained with a decision
table applied to the output of different semantic-based classifiers: the addition
of the kernel-based classifier doesn’t help to improve the overall performance.

6 Conclusion and perspectives

We have seen that identifying conversational activities from the semantic for-
mal representation of a user request could be achieved using machine learning
methods in at least two different ways: first, using a kernel-based method where
requests were taken with a tree representation (i.e. taking into account both the
structure and the semantics of the request), secondly by considering them as fea-
ture vectors where each feature is corresponding to the number of a given entity
in the semantic formal representation (i.e. taking into account only the seman-
tics of the request). Although providing more information, the first approach
has given lower results (65.1% with a NN method) than the second (74.1% with
Naive Bayes). Combining different classifiers using the feature vectors approach,
we manage (with a decision table) to reach a performance of 76.1% correctly
identified conversational activities. Those results, without being outstanding,
are enough to qualify this method as a good counterpart to the rule-based ap-
proach used in DIG, in order to be able to at least identify the general nature
of the user’s request whenever the accurate meaning of the request fails to be
understood by the assisting agent. Note that to evaluate precisely this sinergy
would require focusing only on cases where rules fail, since they are mainly the
cases where we would need the machine learning approaches exposed in this
paper.

The fact that the approach based only on semantics provides better results
seems to mean the structure might be less relevant in conversational activity
identification. Nonetheless, to confirm this, whenever the choice discussed in the
preamble of section 2.3 to deal with real data instead of theoretically ideal rep-
resentation of requests remain valid, it could be interesting to try it to see if
the second method remains the best one when the structure of the request is
always correct. Indeed, the main problems in the requests produced by DIG are
more related to the construction of the correct global structure from individual
entities than to the identification of those entities themselves. Besides, the im-
portance of the performance improvement would help in evaluating how crucial
an enhancement of DIG would be. Finally, we might also consider a finer level
of granularity for the conversational activity, for example by trying to identify
“assistance question about the possibility to do something” in the subcase of the
“direct assistance” activity, to increase the relevance of reactions.

References

1. Ummelen, N., Neutelings, R.: Measuring reading behavior in policy documents: a
comparison of two instruments. IEEE Transactions on Professional Communication
43(3) (2000) 292–301

2. Morrell, R.W., Park, D.C.: The effects of age, illustrations, and task variables
on the performance of procedural assembly tasks. Psychology and Aging 8(3)
(September 1993) 389–99 PMID: 8216959.

3. Amalberti, R.: La conduite des systèmes à risques. PUF (1996)
4. Cassell, J., Sullivan, J., Prevost, S., Churchill, E., eds.: Embodied Conversational

Agents. MIT Press (April 2000)
5. Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.S.:

The persona effect: affective impact of animated pedagogical agents. In: Proceed-
ings of the SIGCHI conference on Human factors in computing systems, Atlanta,
Georgia, United States, ACM (March 1997) 359–366

6. Voorhees, E.M.: Overview of TREC 2007. In: The Sixteenth Text REtrieval
Conference Proceedings, Gaithersburg, Maryland (November 2007) 1–16

7. Leray, D., Sansonnet, J.: Ordinary user oriented model construction for assisting
conversational agents. In: CHAA’06 at IEEE-WIC-ACM Conference on Intelligent
Agent Technology. (2006)

8. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University Of
Chicago Press (August 1994)

9. Brown, P.F., Cocke, J., Pietra, S.A.D., Pietra, V.J.D., Jelinek, F., Lafferty, J.D.,
Mercer, R.L., Roossin, P.S.: A statistical approach to machine translation. Com-
put. Linguist. 16(2) (1990) 79–85

10. Randall, N., Pedersen, I.: Who exactly is trying to help us? the ethos of help
systems in popular computer applications. In: Proceedings of the 16th annual
international conference on Computer documentation, Quebec, Quebec, Canada,
ACM (1998) 63–69

11. Zhang, D., Lee, W.S.: Question classification using support vector machines. In:
Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, Toronto, Canada, ACM (2003) 26–32

12. Li, X., Roth, D.: Learning question classifiers: The role of semantic information.
Natural Language Engineering 12(03) (2006) 229–249

13. Bouchet, F., Sansonnet, J.: Etude d’un corpus de requêtes en langue naturelle pour
des agents assistants. In: WACA 2006 : Actes du Second Workshop Francophone
sur les Agents Conversationnels Animés. (October 2006)

14. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
MA (1998)

15. Bouchet, F., Sansonnet, J.: Caractérisation de requêtes d’Assistance à partir de
corpus. In: Actes de MFI’07, Paris, France (May 2007)

16. Collins, M., Duffy, N.: Convolution kernels for natural language. In Dietterich,
T.G., Becker, S., Ghahramani, Z., eds.: Advances in Neural Information Processing
Systems 14, Cambridge, MA, MIT Press (2002)

17. Gaertner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl.
5(1) (2003) 49–58

18. Vishwanathan, S., Smola, A.J. In: Fast Kernels for String and Tree Matching. The
MIT Press (August 2004) 113–130

19. Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis &
Applications 1(1) (March 1998) 18–27

