Joint handling of Rational and Behavioral reactions
in Assistant Conversational Agents

Jean-Paul Sansonnet

Abstract. We describe here a framework dedicated to studies and
experimentations upon the nature of the relationships between the
rational reasoning process of an artificial agent and its psychologi-
cal counterpart, namely its behavioral reasoning process. This study
is focused on the domain of Assistant Conversational Agents which
are software tools providing various kinds of assistance to people of
the general public interacting with computer based applications or
services. In this context, we show on some examples how the agents
must exhibit both rational reasoning about the system functioning
and a human-like believable dialogical interaction with the users.

1 INTRODUCTION

Assistant Conversational Agents (ACA) are a combination of assis-
tant agents (rational agents used to assist novice computer users) and
conversational agents (virtual characters, generally with a person-
ality, interacting multimodaly with users, particularly through nat-
ural language). We use the word ‘assistant’ as a generic term to em-
brace a broad range of conversational situations, where the agent’s
role varies from an underling presenter only displaying informational
content to a bossy coach or teacher actively monitoring user’s ac-
tions, through more help or companion oriented ones for entertain-
ment or social activities. In those situations, 3 actors (User U, Agent
A, System S) are in bilateral interaction through 3 interfaces (Graph-
ical GUI, Conversational CUI, Control CCI), as shown on Figure 1.

Actors:
U User (Human person) // \\

S System (Computer application)
A Agent (software tool)

Interfaces:

GUI Graphical User Interface

CUl Conversational User Interface
CCl Control Command Interface

Figure 1. A typical Assistant Conversational Agent architecture

Depending on the role played by the agent, its interaction with
the user is expected to be different on the behavioral side, which
can influence the rational side. To deal with the acceptability issues,
psychological factors must be taken into account to produce more
believable human-like interactions, which requires beforehand to be
able to study the relationships between rational and behavioral rea-
soning. Hence, we propose in section 2.1 a general architecture of
a framework (called R&B) dedicated to the support of rational and
behavioral reasoning in the ACA context, describe some of the lan-
guages used in section 2.2, before concluding with two short case
studies in section 3.

1 LIMSI-CNRS, BP 133 91403 Orsay cedex, France. {jps,bouchet} @limsi.fr

and Francois Bouchet !

2 THE R&B FRAMEWORK
2.1 General architecture

The R&B framework (cf. Figure 2), relies on two main principles:
Principle of separation: rational and behavioral heuristics are de-
signed separately and also executed concurrently on two separate en-
gines (R and B), and can be experimented together or not.

Principle of genericity: a R&B case study is associated to a couple
<Policy, Situation> where the policy is a particular instance of the
generic architecture and the situation characterizes the roles of the
actors. Each case study instantiates a particular strategy of heuristic
management in the engines (R and B), and they interoperate through
a shared communication space (W).

The languages FRL and MQL are used to represent respectively a for-
mal representation of the natural language requests (input or output)
used by the dialogue engine (D) and the access functions to elements
of the model (M) described in MDL. Those languages (formally de-
scribed in [1]) act as a layer upon which each case study can imple-
ment its particular strategies, while W deals with Query objects Q;
(in QDL) wrapping FRL and MQL requests, ensuring the communi-
cation between the engines: an engine can access the queries put by
other engines in W, both for consultation or alteration.

User A .
System B

Agent Behavioral Engine

Workspace T l

Rational Engine P \

Behavioral Engine D w 7M
Dialogue Engine . W Q M_QL>

Model Engine Dialogue | «— ! <—| Model
Engine Engine
GUI Graphical user Interface HDL Shared Workspace MDL
CUI Conversational User Interface ant

CCl Control/Command Interface R

Z2owmas>uc

NL Natural Language Rational Engine |HDL

NVI' Non Verbal Interaction H H
FRL Formal Request Language f

MDL Model Description Language Cul Ccl
MaQL Model Query Language |
HDL Heuristic Description Language

QDL Query Description Language

APl Application Programming Interface

Q, Query objects

NLP-chain Natural Language Processing chain

|NLP-chain updates

NL T+l nvee . TAP’l

Actions
GUI APL S
Display

Figure 2. General architecture of a R&B agent

In the case of a strict help agent, the user U generally interacts
with the system S through the GUI, ignoring A. But when “things
go wrong”, the user has the possibility to put a question in Natural
Language, along the following workflow:

o 2 (s Oy 0% i) OO

v cur ¥ p
[FRL] MOL] [MOL FRL]

pMcur Xy
. . API * ODL

with optional system updates: (M — CCI = s) where ﬁ) means
X

that a request written in X is wrapped into a QDL query.

2.2 Description languages

Query Description Language (QDL)
A query is an element of W that wraps a request written in FRL or
MOQL and provides extra attributes. It has the following structure:

Q; = [value[{r|{r;}], history[{D, R, . . .}], to[M], status[+]]

Q) -status

+
= Qi.ValueQi'himy‘Qi'IO ={ri,....mn}{px. yu (shortened)

Where:

-1 € NT is the absolute identifier of the query in the session

—value contains a sequence of FRL | MQL requests or a single one

—history € {D,R, B, M}" is the stack of engines that handled Q;
—to € {D, R, B, M} is the next engine meant to retrieve Q;
—status € [, —, +] shows the success of the latest handling of Q;
Note that although the query can be given a destination (field ‘to’), it
doesn’t prevent other engines to see it in W and possibly to alter it.

Heuristic Description Language (HDL)
A heuristic defines a rational or a behavioral reaction to a class of
formal requests in QDL, and its general form is:

H : id[QDL pattern]:—{ GuardedScripty, . .., GuardedScript,, }
Where:
GuardedScript = {Guard; — Script, ..., Guard, — Script, }
Guard; = Logicalexpr | (@ = True)
Script; = Instruction | {Instructiony, ..., Instruction,, }
Instruction; = Basic operation | Query call | GuardedScript
Query call = Q[Query id, {FRL req | MQOL req}]

Note that instructions can recursively be guarded scripts.

A set of heuristics can be defined and associated with any of the
four engines (D, M, R and B). Their execution is performed by the
Heuristic Scheduler (HS) which ensures their coroutining and:

— within a heuristic H, it decides when to execute (guard—script),
— within a R&B case study defined as <HS-Policy, Situation>, it
decides when engines and heuristics should take a turn.

As guards in heuristics can overlap, several execution policies can
be selected (e.g. first-hit-exit, execute-all, random-choice), and as a
guard can remain active ({rue) after the execution of its script, sev-
eral repetition policies can also be selected (e.g. execute-once, loop).
Moreover, since several heuristics (in the same engine or in differ-
ent ones) can match queries in W, again several heuristic policies
(e.g. behavior-first, rational-first, alternate M and B) and query poli-
cies (e.g. FIFO based, random choice) are possible.

The principle of genericity compels the scheduler to be parameteriz-
able, but we’ll only consider here only the following policies:

— Within heuristics: all instructions with active guards (true) are ex-
ecuted; when several guards are simulteaneously active, a random
choice is performed; instructions are only executed once; a heuristic
is terminated when all its instructions are executed (which may never
happen — hence, W is cleared after each request handling).

— Between heuristics: all heuristics that match a query object in W are
launched (i.e. coroutined with the already launched ones). When a
heuristic is terminated, it can be launched again (but no reentrance
is available). When several heuristics (even associated with different
engines) are eligible, a random choice is performed, thus resulting in
various R&B interleaved executions.

3 EXAMPLES OF HEURISTICS

Let’s assume the user puts the question “What is your age?”, which
has for consequence the addition into the workspace W of the query:

Ql = {ASKu [agent'age]}%DHR

A possible rational heuristic handling questions about attributes is:
Hg; : ask—agent—attribute[{ASKu[agent.x_]}:l_] —{
— QIi, GET [x_1],

Qf — Qlj, TELL,[agent.x_, Q;.value]],

Q; — Q[j, {UNKNOWN,[agent.x_], TELL,[();.value]}]

Q7" — Qi
}
1: X_is a pattern variable matching any symbol like age, gender. ..
2: The empty guard prompts the script to be executed immediately.
In @, x_ being ‘age’, a query @, is created to get this value from M.
3: If the request in @); has been successful (Q,.status == +), FRL
request TELL, [agent.x_, Q;.value] is wrapped into a new query Q;,
and Q;.value contains a MQL request OK [retrieved-value] .
4: If the request in); has been unsuccessful (Q);.status == —),
a FRL answer in two parts is wrapped into a new query (Q; and
Q;.value contains FAIL [report].
5: Once @; has been handled, the current query Qy,;, is declared to
have been successfully handled as well.
In any case, the request in @, is then retrieved by D to be sent to U.

o b W N

Now let’s assume the user expresses his/her dissatisfaction regard-
ing the agent previous reaction(s), generating the addition into W of:
Q> = {DISLIKE, [agent}{, »

Dealing with an emotional reaction can’t be rational, and one of the
possible behavioral reactions could be given by a heuristic like:
Hg> : dislike—agent[{DISLlKEu[agent]}:‘_] —{
—{ Qi, MAP [energy, A .z x 0.91],
Qlj, MAP [confidence, A z.x x 0.97],
Ql[k, MAP [cooperation, A z.z * 0.9]] }
Qi A Q;.value < —0.5 — Q[I, TELL,[energy, “tired”]]
Qj+ A Qj.value < —0.5
— Q[l, TELL,[confidence, “depressed”]]
}

2-4: Executes a sequence of queries to change the agent’s mind state
6: If the agent’s energy is very low, a query with a FRL request to
say “I feel tired” is generated.

7: A second FRL request can be added to that query (or created).

\]fO\LﬂbWNI—*

Other attempts to add psychological aspects to agent architectures
have been undertaken (like [3]), and [2] has even shown that the or-
der in which heuristics are applied can impact the agent’s perceived
personality. The proposed R&B framework, relying on the state of
the art for rationality (decision trees here, but conventional plans in
the current Mathematica implementation?) and psychology (cf. the
mind model in [1]) provides a useful testbed for flexible (thanks to
the shared workspace and parameterizable scheduling policies) and
controllable experiments (thanks to the principle of separation). Fur-
ther work will have to enhance this approach by defining software
tools for heuristics manipulation and developing larger case studies.

REFERENCES

[1] Frangois Bouchet and Jean-Paul Sansonnet, ‘A framework for modeling
the relationships between the rational and behavioral reactions of assist-
ing conversational agents’, in Proc. of the 7th European Workshop on
Multi-Agent Systems (EUMAS’09), Agia Napa, Cyprus, (2009).

[2] Mehdi Dastani and Leendert van der Torre, ‘A classification of cognitive
agents’, in Proceedings of Cogsci02, pp. 256—261, (2002).

[3] Emma Norling and Franck E. Ritter, “Towards supporting psychologi-
cally plausible variability in Agent-Based human modelling’, in Proc. of
AAMAS’ 04, (2004).

2 http://www.limsi.fr/~Jjps/research/rnb/rnb.htm

