Impact of agent’s answers variability on its believability and human-likeness and consequent chatbot improvements

Mao Xuetao
François Bouchet
Jean-Paul Sansonnet

LIMSI-CNRS,
Université Paris-Sud XI

{xuetao, bouchet, jps}@limsi.fr

AISB 2009

April 7th 2009
Outline

• Context: assisting novice users with ECA
 – The increasing need for assistance
 – Assisting novice users with ECA
 – Help systems comparison
 – Dialogue system or chatbots?
 – Key issues

• Methodology

• Results

• Conclusion
The increasing need for assistance

- **Users** evolution:
 - In number:
 - In variety:
 - from computer scientists to everyone

- **Hardware** evolution (Moore’s law):
 - Application fields
 - Interaction fields

- **Software** evolution:
 - More numerous
 - More complex: in public applications
 - 150 « basic » actions (in menus);
 - 60 dialogue boxes;
 - 80 tools (through icons).
 (Beaudoin-Lafon, 1997)
Assisting novice users with ECA

• **Assisting**: « An Assisting Agent is a software tool with the capacity to resolve help requests, issuing from novice users, about the static structure and the dynamic functioning of software components or services » (Maes, 1994)

• **Conversational**: interaction in unconstrained natural language (NL)

 Why?

 Frustrated (novice) users spontaneously express use NL (⇔ « thinking aloud effect » (Ummelen & Neutelings, 2000))

• **Embodied**: given a graphical more or less realistic appearance

 Why?

 Increased agreeability and believability – « Persona Effect » (Lester, 1997)
Help systems comparison

<table>
<thead>
<tr>
<th>Help system</th>
<th>Reactivity</th>
<th>Vocabulary</th>
<th>Task-oriented</th>
<th>Dynamic</th>
<th>Personalized</th>
<th>Proactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper documentation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electronic documentation</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FAQ, How-to, Tutorial</td>
<td>+</td>
<td>=</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Contextual Help Systems</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assisting Conversational Agent</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>=</td>
</tr>
</tbody>
</table>

- **Reactivity**: how fast is it for the user to open the help system when it needs it?
- **Vocabulary**: are there strong constraints or limitations on the words the user has to know to efficiently use the help system? (ex: specific keywords/grammar constructions for NL)
- **Task-oriented**: does the help system explain procedures and not only define concepts?
- **Dynamic**: does the help system change according to the application state?
- **Personalized**: does the help system change according to the user?
- **Proactive**: does the help system appear only when asked for or can it anticipate the user needs (without being intrusive)?

Conclusion

Assisting conversational agents *potentially* seem to be the most efficient way to help novice users.
Chatbots are limited in terms of \textit{generictity} (need to rebuild everytime) (Allen, 1995) and \textit{linguistically} (Wollermann, 2006) – but how far can we push the approach?
Dialog system or chatbot?

• **Advantages:** easy, light, precise
 – They are **easy to develop**: no large semantic analyzer, no complex reasoning tools;
 – They are **light to deploy** in a web-based environment → client architectures can be envisioned;
 – They provide **robust** natural language reactions (Evasive list effect – ELIZA effect);
 – They are tailored and well-suited for the field of **ludo-social** chat;
 – When associated with a given application, they can be customized to be extremely precise.

• **Drawbacks:** lack of genericity, linguistical limits
 – Minimalistic/ultra-customized model of the application;
 – Minimalistic model of the dialogue session and of the users;
 – **No semantic analyzer** → lack of precision in the requests (grammar, speech acts, ...);
 – **No formal requests** → class reactions are directly linked to specific linguistics patterns;
 – **No generic reasoning tools**, especially when the function of assistance is concerned.
Key issues

Hypothesis: variability improves user’s perception of the ECA

1. Technical feasibility: is it **possible** to handle variability with a chatbot architecture?

2. Need: do people **notice** variability?

3. Effect: does it **affect** the perception users have of the agent? And if yes, how?

4. Can it be **useful** for assistance?
Outline reminder

• Context: assisting novice users with ECA

• Methodology
 – Experimental framework: DIVA framework overview
 – Experimental framework: DIVA NLP-chain
 – Experiment principles
 – Experimental protocol
 – Questionnaires

• Results

• Conclusion
DIVA framework overview

- **DOM Integrated Virtual Agent:**
 - Open programming framework
 - High level of interaction (AJAX)

1. Embodied Agents Elsi & Cyril:
2. Natural Language Processing chain:
Experimental framework: DIVA NLP-chain

1. Formalization phase
 1. Sentences are preprocessed and words are lemmatized;
 2. A semantic class (KEY) is associated with each word

2. Interpretation phase
 Interpretation rules are of the form: Pattern \rightarrow Reaction
 Where reactions are expressed as procedural heuristics achieving reasoning tasks over the description of the application (the topic file).
Experimental framework: DIVA NLP-chain

« How old are you? »

DIVA:
1) **Formalization:**
 <QUEST HOW ISOLD TOBE THEAVATAR>

2) **Interpretation:**
 <rule id="age" pat="QUEST THEAGE|HOW ISOLD">
 <do>
 THETOPIC.age.asked++;
 If (THETOPIC.age.asked >= 1)
 TALK.prepend(['As I said','I’ve told you, ']);
 If (THETOPIC.gender = ‘female’)
 TALK.say('It’s not polite to ask this.');
 </do>
 <say>
 <p>I’m _THETOPIC.age_. years old</p>
 <p>I’m _THETOPIC.age_ ...</p>
 <p>My age is _THETOPIC.age_</p>
 </say>
 </rule>

Classical chatbots (ALICE – AIML):

 <category>
 <pattern>HOW OLD ARE YOU</pattern>
 <template>
 <set_it>I</set_it>
 am 25 years old
 </template>
 </category>

1. Matches a user input containing the **exact pattern**
2. Handles a **minimalistic** model of the session (IT)
3. Sends an entirely **predefined** answer
Experiment principles (1)

- Three (linked) parameters actually tested:
 - **Responsivity**: the requested information is in the answer
 - **Variability**: twice the same question can lead to different answers
 - **Dependence**: variability with a memory of previous questions

- Differences: one only answer when requested its **age**.

- 6 female agents, visually identical

- Interaction through chatbox at the bottom of the window
Experiment principles (2)

« *How old are you?* »

<table>
<thead>
<tr>
<th>Responsive</th>
<th>Variable</th>
<th>Dependent</th>
<th>1(^{\text{st}}) reply</th>
<th>2(^{\text{nd}}) reply</th>
<th>3(^{\text{rd}}) reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>I’m 25</td>
<td>I told you I’m 25</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>I’m 25</td>
<td>25 years old</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✗</td>
<td>-</td>
<td>I’m 25</td>
<td>I’m 25</td>
</tr>
<tr>
<td>4</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>I won’t tell you</td>
<td>I said I won’t tell you this</td>
</tr>
<tr>
<td>5</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>I won’t tell you</td>
<td>It’s a secret</td>
</tr>
<tr>
<td>6</td>
<td>✗</td>
<td>✗</td>
<td>-</td>
<td>I won’t tell you</td>
<td>I won’t tell you</td>
</tr>
</tbody>
</table>
Experimental protocol

• User’s objective: retrieving information about an agent
 – Free chat
 – Suggestions:
 • Examples given: name, age, job...
 • Short interaction (< 2 minutes)

• Interaction with two agents:
 – Case 1 or Case [2..6]
 – Case [2..6] or Case 1

• Three questionnaires:
 – One after each interaction (5-point Likert scales)
 – Final comparative questionnaire
Questionnaires

• 7 parameters evaluated:
 – **Variability**: not always answering the same way ⇔ noticing variability
 – **Cooperation**: if information requested could be obtained ⇔ noticing responsiveness
 – **Precision**: « 25 years old » / « young »
 – **Relevance**: the agent remains in the topic of conversation
 – **Believability**: the agent being a female is believable
 – Human-likeness: same answer could come from a human being
 – Global satisfaction: overall feeling about conversation

Only after interaction
Outline reminder

• Context: assisting novice users with ECA

• Methodology

• Results
 – Raw results
 – Comparative questionnaire results
 – Post-interaction questionnaire results

• Conclusion
Raw results

• 21 subjects, over the internet
 – Sex: 14 men / 7 women
 – Age: 20-60 (62% in 26-30)
 – Origin: Chinese/French mainly
 – Studies: university level (85%)
 – Computer science knowledge: disparate (42% below 3/5)

• 38 post-interaction questionnaires

• 19 final questionnaires
Comparative questionnaire results

• Globally: 1 vs all
 if a difference is made, 1 is preferred, for every parameter

• Individually: 1 vs [2-6]
 if a difference is made, 1 is preferred, except:
 – 4 (¬RVD) is perceived as more human-like
 – 6 (¬R¬V) is perceived as more relevant

• Discussion:
 – Not giving the age of a woman is not problematic:
 parameters interdependency
 – Variability is even more crucial in that case (4 vs 5-6):
 expectation of a high level behavior
Post-interaction questionnaire results

• Sample too small to obtain many statistically significant results

• Many expected results:
 – Satisfaction: \(RVD > \neg R \neg V \)
 – Cooperation: \(RVD > 5, RVD > \neg R \neg V \)
 – Precision: \(RVD > \neg RVD, RVD > \neg R \neg V \)

• Some unexpected ones:
 – Precision: \(RVD < R \neg V \)
 – Believability: \(RVD < RV \neg D \)
 – Human-likeness: \(RVD < R \neg V \)

• Discussion:
 – Variability can make the agent look more imprecise
 – If the rest of the behavior doesn’t follow, it is interpreted as mistakes
Conclusion

• **Possibility** to handle variability with a chatbot architecture

• Users **notice** variability in agents

• Agents with variability are perceived as:
 – more believable,
 – more human-like...

...but **coherence** is crucial!

• Can it be useful for assistance?
 – Indirectly yes:
 • chat is important (~40%) even for assisting agents only *(Bouchet&Sansonnet, 2007)*
 • improved user’s satisfaction
 • reduced « motivational paradox » *(Carroll&Rosson, 1987)*
 – Directly? Upcoming experiment

• Variant: behaviours affecting every parameter
• Study of parameters influence on each other (ex: gender/age)