Tree kernel and Feature Vector Methods for Formal Semantic Requests Classification

François Bouchet Jean-Paul Sansonnet LIMSI-CNRS, Université Paris-Sud XI

Introduction

Context: assistance to novice computer users with an Embodied **Conversational Agent**

Input: Natural Language request

Output: Relevant multimodal reaction

Objective: preliminary step of automatic identification of the conversational activity of the request.

Semantic-based classification

Methodology: vectors matrix approach – a request = a vector scheme NEG ASK ... Click Modify ... person object ... R_{ex} 0 0 ... 1 0 ... 0 1 ...

Results:

▶ KNN method ($K \in [[1, 20]]$) with different distances:

Structure-based classification

Methodology: tree kernel approach – a request = a tree

$$k(R_1, R_2) = \sum_i h_i(R_1)h_i(R_2) = \sum_{r_1 \in \mathcal{R}_1, r_2 \in \mathcal{R}_2} S(r_1, r_2)$$

Applicable since:

- ▶ the fields of a request are always in the same order;
- ▶ the number of fields is the same for any given head (*e.g.* Click);
- partially analyzed requests = tree with a root having N elements.

But specificities requiring modifications:

- terminal values in subtrees;
- multiple values fields: number of fields and their order vary;

Bray-Curtis (thick), correlation (long dashed), Canberra (thin), Euclidian (dashed), Manhattan (dotted), Hamming (dot dashed), Chebyshev (dashed)

Other classification methods (using leave-one-out):

ID	Classification method	Overall score
sem1	Naive Bayes (kernel estim.)	74.4%
sem2	Decision tree (C4.5)	71.1%
sem3	Adaboost Naive Bayes (kernel estim.)	71.1%
sem4	Bayes Net	64.9%
sem5	Decision Table	71.0%
sem6	Adaboost C4.5	71.7%
sem7	KNN (K=12, Bray-Curtis dist.)	70.4%

Combination of classifiers

ID	Classification method	Overall score
-	Baseline	40.2%
ker	Nearest Neighbours	65.4%
sem1	Naive Bayes (kernel estim.)	74.4%
sem1+ker	Decision Table	74.4%
sem1+sem2	C4.5	75.2%
sem[1-7]	Decision Table	76.1%
sem[1-7]+ker	Decision Table	76.1%

 \blacktriangleright k is dependent on the complexity of the request \Rightarrow normalization very peaked kernel function (small modifications = big impact) \Rightarrow weight dependent on the number of subtrees.

Results: using leave-one-out

- Combination of semantic classifiers increases performance from 74.4% to 76.1%
- ► The tree kernel approach isn't helping: no improvement

Conclusion and perspectives

Results not outstanding but enough for a complementary method Structure of a request seems not essential in the conversational activity identification

Considering application of same methods with:

Only correctly represented formal requests (manual transcription) Thinner level of granularity for conversational activities (ex: question) about the possibility of an action)

LIMSI-CNRS - Université Paris-Sud XI - BP 133, 91403 Orsay Cedex, France

Mail: {bouchet, jps}@limsi.fr